
1

Preemptible I/O Scheduling of Garbage Collection
for Solid State Drives

Junghee Lee∗, Youngjae Kim†§, Galen M. Shipman†, Sarp Oral†, and Jongman Kim∗

Abstract—Unlike hard disks, flash devices use out-of-update
operations and they require a garbage collection (GC) process
to reclaim invalid pages to create free blocks. This GC process
is a major cause of performance degradation when running
concurrently with other I/O operations as internal bandwidth
is consumed to reclaim these invalid pages. The invocation of the
GC process is generally governed by a low watermark on free
blocks and other internal device metrics that different workloads
meet at different intervals. This results in I/O performance that
is highly dependent on workload characteristics. In this paper,
we examine the GC process and propose a semi-preemptible
GC scheme that allows GC processing to be preempted while
pending I/O requests in the queue are serviced. Moreover,
we further enhance flash performance by pipelining internal
GC operations and merge them with pending I/O requests
whenever possible. Our experimental evaluation of this semi-
preemptible GC scheme with realistic workloads demonstrate
both improved performance and reduced performance variability.
Write-dominant workloads show up to a 66.56% improvement
in average response time with a 83.30% reduced variance in
response time compared to the non-preemptible GC scheme. In
addition, we explore opportunities of a new NAND flash device
that supports suspend/resume commands for read, write and
erase operations for fully preemptible GC. Our experiments with
a fully preemptible GC enabled flash device show that request
response time can be improved by up to 14.57% compared to
semi-preemptible GC.

Index Terms—Solid-state Drives (SSDs), Garbage Collection,
Preemptive I/O, I/O Scheduling, Flash Memory, Storage Systems.

I. INTRODUCTION

HARD disk drives (HDD) are the primary storage media

for large-scale storage systems and have been for a

few decades. Recently, NAND flash memory based solid-

state drives (SSD) have become more prevalent in the stor-

age marketplace with advancements in the semi-conductor

technology. Unlike HDDs, SSDs do not have mechanically

moving parts. SSDs offer several advantages over HDDs such

as lower access latency, higher resilience to external shock

and vibration, and lower power consumption which results in

lower operating temperatures. Other benefits include lighter

weight and flexible designs in terms of device packaging.

Moreover, recent reductions in cost (in terms of dollar per

∗J. Lee and ∗J. Kim are with the School of Electrical and Computer
Engineering, Georgia Institute of Technology, Atlanta, GA, 30332 USA e-
mail: {jlee36, jkim}@ece.gatech.edu.
†Y. Kim, †G. Shipman, and †S. Oral are with Oak Ridge Na-

tional Laboratory, Oak Ridge, TN 37831 USA e-mail: {kimy1, gshipman,
oralhs}@ornl.gov. §Y. Kim is a corresponding author.

Copyright (c) 2012 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

GB) have accelerated the adoption of SSDs in a wide range

of application areas from consumer electronic devices to

enterprise-scale storage systems.

One interesting feature of flash technology is the restriction

of write locations. The target address for a write operation

should be empty [1], [15]. When the target address is not

empty the invalid contents must be erased for the write

operation to succeed. Erase operations in NAND flash are

nearly an order of magnitude slower than write operations.

Therefore, flash-based SSDs use out-of-place writes unlike in-

place writes on HDDs. To reclaim stale pages and to create

space for writes, SSDs use a Garbage Collection (GC) process.

The GC process is a time-consuming task since it copies non-

stale pages in blocks into the free storage pool and then erases

the blocks that do not store valid data. A block erase operation

takes approximately 1-2 milliseconds [1]. Considering that

valid pages in the victim blocks (to be erased) need to be

copied and then erased, GC overhead can be quite significant.

GC can be executed when there is sufficient idle time

(i.e., no incoming I/O requests to SSDs) with no impact to

device performance. Unfortunately, prediction of idle times in

I/O workloads is challenging and some workloads may not

have sufficiently long idle times. In a number of workloads

incoming requests may be bursty and an idle time can not be

effectively predicted. Under this scenario the queue-waiting

time of incoming requests will increase. Server-centric en-

terprise data center and high-performance computing (HPC)

environment workloads often have bursts of requests with low

inter-arrival time [22], [15]. Examples of enterprise workloads

that exhibit this behavior include on-line-transaction process-

ing applications, such as OLTP and OLAP [6], [24]. Further-

more, it has been found that HPC file systems are stressed

with write requests of frequent and periodic checkpointing and

journaling operations [31]. In our study of HPC I/O workload

characterization at Oak Ridge Leadership Computing Facility

(OLCF), we observed that the bandwidth distributions are

heavily long-tailed and write requests occupy more than 50%

of workloads [22].

In this paper, we propose a semi-preemptible garbage col-

lection scheme (PGC) that enables the SSDs to provide sus-

tainable bandwidths in the presence of these heavily bursty and

write-dominant workloads. We show that the PGC can achieve

higher bandwidth over the non-preemptible GC scheme by

allowing preemption of an on-going GC process to service

incoming requests. While our previous work [26] discusses

only semi-preemptible GC, this paper also demonstrates the

feasibility of fully-preemptible GC (F-PGC) that supports

0000–0000/00$00.00 c© 2012 IEEE

2

suspend/resume commands for read, write and erase oper-

ations.

This paper makes the following contributions:

• We empirically observe the GC related performance

degradation on commercially-off-the-shelf (COTS) SSDs

for bursty write-dominant workloads. Based on our obser-

vations, we propose a novel semi-preemptible GC scheme

for SSDs.

• We identify preemption points that can minimize the pre-

emption overhead. We use a state diagram to define each

state and state transitions that result in preemption points.

For experimentation we enhance the existing Microsoft

Research (MSR)’s SSD simulator [1] to support our PGC

algorithm. We show an improvement of up to 66.56% in

average response time for overall realistic applications.

• We investigate further I/O optimizations to enhance the

performance of SSDs with PGC by merging incoming

I/O requests with internal GC I/O requests and pipelining

these resulting merged requests. The idea behind this

technique is to merge internal GC I/O operations with I/O

operations pending in the queue. The pipelining technique

inserts the incoming requests into GC operations to

reduce the performance impact of the GC process. Using

these techniques we can further improve the performance

of SSDs with PGC enabled by up to 13.69% for the Cello

benchmark.

• We conduct a comprehensive study with synthetic traces

by varying I/O patterns (such as request size, inter-arrival

times, sequentiality of consecutive requests, read and

write ratio, etc.) We present results of a realistic study

with enterprise-scale server and HPC workloads. Our

evaluations with PGC enabled SSD demonstrate up to

a 66.56% improvement in average I/O response time and

an 83.30% reduction in response time variability.

• We discuss the feasibility of F-PGC. When the sus-

pend/resume commands are only allowed for the erase

operation, the average response time is improved by up

to 8.00% compared to PGC. When they are supported or

read, write, and erase operations, the average response

time is improved by up to 14.57%.

II. BACKGROUND AND MOTIVATION

Unlike rotating media (HDD) and volatile memories

(DRAM) which only need read and write operations, flash

memory-based storage devices require an erase operation [29].

Erase operations are performed at the granularity of a block

which is composed of multiple pages. A page is the granularity

at which reads and writes are performed. Each page on flash

can be in one of three different states: (i) valid, (ii) invalid and

(iii) free/erased. When no data has been written to a page, it is

in the erased state. A write can be done only to an erased page,

changing its state to valid. Erase operations (on average 1-2

ms) are significantly slower than reads or writes. Therefore,

out-of-place writes (as opposed to in-place writes in HDDs)

are performed to existing free pages along with marking the

page storing the previous version invalid. Additionally, write

latency can be higher than the read latency by up to a factor

10. The lifetime of flash memory is limited by the number

of erase operations on its cells. Each memory cell typically

has a lifetime of 103-109 erase operations [14]. Wear-leveling

techniques are used to delay the wear-out of the first flash

block by spreading erases evenly across the blocks [19], [8].

Flash-based SSD provides a host interface (such as Fiber-

Channel, SATA, PATA, and SCSI) to appear as a block

I/O device to the host computer [26]. The main controller

is composed of two units, the processing unit (such as an

ARM7 processor) and fast working memory (such as SRAM

or DRAM). The virtual-to-physical mappings are processed by

the processor and the data-structures related to the mapping

table are stored in working memory in the main controller.

The software module related to this mapping process is called

the Flash Translation Layer (FTL). A part of working memory

can be also used for caching data.

A storage pool in an SSD is composed of multiple flash

memory planes. The planes are implemented in multiple dies.

For example, the Samsung 4 GB flash memory has two dies.

A die is composed of four planes, each of size 512 MB [1].

A plane consists of a set of blocks. The block size can vary

(64KB, 128KB, 256KB, etc.) depending on the memory manu-

facturer. The SSD can be implemented using multiple planes.

SSD performance can be enhanced by interleaving requests

across the planes, which is achieved by a multiplexer and de-

multiplexer between working memory and flash memories [1].

The Flash Translation Layer (FTL) is a software layer that

translates logical addresses from the file system into physical

addresses on a flash device. The FTL helps in emulating

flash as a normal block device by performing out-of-place

updates thereby hiding the erase operations in flash. The FTL

mapping table is stored in a small, fast working memory.

FTLs can be implemented at different granularities in terms

of the size of a single entry capturing and address space in the

mapping table. Many FTL schemes [11], [27], [20], [28] and

their improvement by write-buffering [21] have been studied.

A recent page-based FTL scheme called DFTL [15] utilizes

temporal locality in workloads to overcome the shortcomings

of the regular page-based scheme by storing only a subset of

mappings (those likely to be accessed) on the limited working

memory and storing the remainder on the flash device itself.

Due to out-of-place updates, flash devices must clean stale

data for providing free space (similar to a log-structured file

system [35]). This cleaning process is known as garbage

collection (GC). During an ongoing GC process incoming

requests are delayed until the completion of the GC when

their target is the same flash chip that is busy with GC.

Current generation SSDs use a variety of different algorithms

and policies for GC that are vendor specific. It has been

empirically observed that GC activity is directly correlated

with the frequency of write operations, amount of data written,

and/or the free space on the SSD [9]. The GC process

can significantly impede both read and write performance,

increasing queuing delay.

A. Motivation

In order to empirically observe the effect of GC on the

service times of incoming I/O requests, we conducted block-

3

(a) Write-dominant (80% write) (b) Read-dominant (20% write)

Fig. 1: Bandwidth variability comparison for MLC and SSD SSDs for different write percentages of workloads.

level I/O performance tests with various SSDs. Table I shows

their detail specifications. We selected the Super Talent 128

GB SSD [38] as a representative of multi-level cell (MLC)

SSDs and the Intel 64 GB SSD [18] as a representative

of single-level cell (SLC) SSDs. We denote the SuperTalent

MLC, and Intel SLC devices as SSD(A), and SSD(B) in the

remainder of this study, respectively. All experiments were

performed on a single server with 24 GB of RAM and an Intel

Xeon Quad Core 2.93GHz CPU [17], running Linux (Lustre-

patched 2.6.18-128 kernel). The noop I/O scheduler with FIFO

queuing was used [33].

TABLE I: Characteristics of SSDs used in our experiments.

To measure the I/O performance we use a benchmark

that exploits the libaio asynchronous I/O library on Linux.

Libaio provides an interface that can submit one or more I/O

requests in one system call iosubmit() without waiting for I/O

completion. It can also perform reads and writes on raw block

devices. We used the direct I/O interface to bypass the I/O

buffer cache of the OS by setting the O-DIRECT and O-SYNC

flags in the file open() call.

We experimented with two workloads of 40% and 80%

writes. The I/O request size was fixed at 512KB, and re-

quest access patterns were completely random. We measured

bandwidth every second. Figure 1(a)&(b) show time-series

plots of our bandwidth measurements for SSD(A)&(B). We

observe that (i) several bandwidth drops occur over time

for all experiments, and (ii) the bandwidth drops are more

frequent for the workloads with a higher amount of writes. In

order to fairly compare the bandwidth variability for different

workloads, we calculated coefficient of variation (CV)1 values

for each experiment.

TABLE II: Average, Standard Deviation, and CV values for Fig-
ure 1(a)&(b).

1Coefficient of variation (Cv) is a normalized measure of dispersion of a
probability distribution, that is, Cv=σ

µ
.

Table II compares the CV values for the experiments. We

see that a higher write percentage in the workload shows

higher CV values, which means higher bandwidth variability.

We suspect that this performance variability is attributable to

the GC process. This insight led to our design and development

of a preemptible garbage collector. The basic idea of the

proposed technique is to service an incoming request even

while GC is running.

III. PREEMPTIBLE GARBAGE COLLECTION

A. Semi-Preemptible GC

Figure 2 shows a typical garbage collection process. Once a

victim block is selected during GC, all the valid pages in that

block are moved into an empty block and the victim block

is erased. A moving operation of a valid page can be broken

down to page read, data transfer, page write, and meta data

update operations. If both the victim and the empty block are

in the same plane, the data transfer operation can be omitted

by using a copy-back operation [1] if the flash device support

this operation.

Fig. 2: Description of operation sequence during GC.

We identify two possible preemption points in the GC

sequence marked as ‘A’ and ‘B’ in Figure 2. Preemption point

‘A’ is within a page movement and ‘B’ is in-between page

movement. Preemption point ‘A’ is just before a page is written

and ‘B’ is just before a new page movement begins. We may

also allow preemption at the point marked with a (*), but the

resulting operations are the same as those of ‘A’ as long as

the preemption during data transfer stage is not allowed. At

preemption point ‘A’, only a write request can be serviced if

the NAND flash memory supports pipelining commands of the

same type because the page buffers are already occupied by the

previous read page operation. The pipelining will be described

in more detail in Section III-C. If the NAND flash does not

support pipelining, no request can be serviced at preemption

point ‘A’. In contrast, preemption point ‘B’ can service any

kind of incoming request.

Figure 3 illustrates our proposed semi-preemption scheme.

The subscripts of R and W indicate the page number accessed.

4

Fig. 3: A semi-preemption. R, W, and E denote read, write, and erase
operations, respectively. The subscripts indicate the page number
accessed.

Suppose that a write request on page z arrives while writing

page x during GC. With a conventional non-preemptible

GC, the request should be serviced after GC is finished, as

illustrated in the upper diagram of Figure 3. If GC is fully

preemptible, the incoming request may be serviced immedi-

ately. To do so, the on-going writing process on x should be

canceled or suspended first. However, there is no NAND flash

memory so far that allows on-going read/write operations to

be canceled or suspended, to our best knowledge. The fully

preemptible GC is discussed in more detail in Section IV. In

PGC, the preemption occurs only at preemption points. As

shown in the bottom of Figure 3, the incoming request on

page z is inserted at preemption point ‘B’. As a result, the

response time of writing page z is substantially reduced.

Fig. 4: The internal structure of NAND flash device.

1) Space Overhead Discussion: Our proposed semi-

preemption does not require an additional buffer to service

incoming requests while GC is running because it exploits the

page buffer that already exists in the flash device. Figure 4

shows the internal structure of a typical NAND flash device.

One device consists of multiple dies, each of which contains

multiple planes. Each plane has a page buffer and number of

blocks. The pages in the block cannot be directly accessed. To

read data from a page, the data should be copied to the page

buffer and read from that page buffer. Data should be written

through the page buffer in a similar manner.

To move page x in GC, the data on page x should be copied

to the page buffer in the plane where page x is located. Then,

the data should be moved to a page buffer where a free block

is located, and then written onto a page in the free block. At

preemption point ‘B’ the page buffers are available in both

planes. Therefore, to service read and write requests on any

page, the service can be launched through the page buffer. In

contrast, at preemption point ‘A’ the page buffer is already

occupied by the data of page x. If the incoming request is

on the same plane as x, it cannot be serviced because the

page buffer is not available. Only if the flash device supports

pipelining, and the incoming request is a write request, the

request can be serviced. For example, data of the incoming

write request can be written to the page buffer while data in

the page buffers are being written to a page in the free block.

2) Computation Overhead Discussion: Our proposed semi-

preemption does not require an interrupt. Due to the small

number of preemption points it can be implemented by a

polling mechanism. At every preemption point, the GC process

looks up the request queue. This may involve a function call,

a small number of memory accesses to look up the queue,

and a small number of conditional branches. Assuming 20

instructions and 5 memory access per looking up, 10ns per

instruction (100MHz), 80ns per memory access, the look-

up operation takes 600ns. One page move involves at least

one page read which takes 25µs and one page write which

takes 200µs [1]. Since there are two preemption points per

one page move, the overhead of looking up the queue per one

page move can be estimated as 1.2µs/225µs = 0.53%.

To resume GC after servicing the incoming request, the

context of GC needs to be stored. The context to be stored at

preemption points ‘A’ and ‘B’ is very small because it doesn’t

require an additional buffer to service the incoming requests.

At preemption point ‘A’, the block number of the victim block

and the page number of the page stored in the page buffer need

to be stored in the working memory. At preemption point ‘B’,

only the block number of the victim block needs to be stored.

Because the meta data is already updated, the incoming request

can be serviced based on the mapping information. Thus, the

memory overhead for PGC is negligible.

B. Merging Incoming Requests into GC

While servicing incoming requests during GC, we can

optimize the performance even further. If the incoming request

happens to access the same page in which the GC process is

attending, it can be merged.

Fig. 5: Merging an incoming request to GC.

Figure 5 illustrates a situation where the incoming request

of a read or write on page x arrives while page x is being read

by the read stage of GC. The read request can be directly

serviced from the page buffers and the write request can be

merged by updating data in the page buffers. In case of copy-

back operations, the data transfer is omitted, but to exploit

merging, it cannot be omitted. As for the read request, data

in the page buffer should be transferred to service the read

request. For the write request, the requested data should be

written to the page buffer. We can increase changes of I/O

merging operations by re-ordering the sequence of pages to

be moved from the victim block. Suppose page x moves and

y and z then, move. During GC, the order of pages to be moved

does not matter. Thus, when a request on page z arrives, it can

be reordered as z, x, and y.

5

C. Pipelining Incoming Requests with GC

The response time can be further reduced even if the

incoming request is on a different page from valid pages in the

victim block to be moved. To achieve this we take advantage

of the internal parallelism of the flash device. Depending on

the type of the flash device, internal parallelism and its asso-

ciated operations can be different. In this paper, we consider

pipelining [32] as an example. Pipelining allows overlapping

the data transfer and the write operations as illustrated at the

bottom of Figure 6. If two consecutive requests are of the

same type, i.e., read after read, or write after write, these two

requests can be pipelined.

Fig. 6: Pipelining an incoming request with GC.

Figure 6 illustrates a case where an incoming request is

pipelined with GC. As an example, lets assume that there is

a pending read operation on page z at the preemption point

‘B’ where a page read on page y is about to begin. Since

both operations are read, they can be pipelined. However, if

the incoming request is a write operation, they can not be

pipelined at preemption point ‘B’ as two operations need to

be issued at ‘B’ and they are not of the same type. In this case,

the incoming request should be inserted serially as shown in

Figure 3.

It should be noted that pipelining is only an example of

exploiting the parallelism of an SSD. An SSD has multiple

packages, where each package has multiple dies, and each die

has multiple planes. Thus, there are various opportunities to

insert an incoming requests into GC as means of exploiting

parallelism at different levels. We may interleave servicing

requests and moving pages of GC in multiple packages or issue

a multi-plane command on multiple planes [32]. According to

the GC scheme and the type of operations the flash device

supports, there are many instances of exploiting parallelism.

D. Level of Allowed Preemption

The drawback of preempting GC is that the completion time

can be delayed which may incur a lack of free blocks. If

the incoming request does not consume free blocks, it can be

serviced without depleting the free block pool. However, there

may be a case where the incoming request is a write request

whose priority is high but there are not enough free blocks.

The incoming requests may be prioritized by the upper-layer

file system. In such a case, GC should be finished as soon as

possible.

Based on these observations, we identify four states of GC:

• State 0 (S0): GC execution is not allowed.

• State 1 (S1): GC can be executed but all incoming

requests are allowed.

• State 2 (S2): GC can be executed but all free block

consuming incoming requests are prohibited.

• State 3 (S3): GC can be executed but all incoming

requests are prohibited.

Conventional non-preemptible GC has only two states: 0

and 3. Generally, switching from S0 to S3 is triggered by

threshold or idle time detection. Once the number of free

blocks falls below a pre-defined threshold the state is changed

from S0 to S1 and from S1 to S2. We call the conventional

non-preemptible threshold as soft but in our proposed design

the system allows for the number of free blocks to fall

below the soft threshold. We define a new threshold called

hard which prevents a system crash by running out of free

blocks. Switching from S2 to S3 is triggered by the type

of incoming requests. If the incoming request is write whose

priority is high, it switches to S3. The priority should depend

on requirements of the system.

Fig. 7: State diagram of semi-preemptible GC.

Figure 7 illustrates the state diagram. If the number of free

blocks (Nfree) becomes less than the soft threshold (Tsoft),

the state is changed from 0 to 1. If the free block pool is

recovered and Nfree is larger than Tsoft, then the system

switches back to state 0. If Nfree is less than the hard

threshold (Thard), the system switches to S2 or remains in

S1. In state 2, the system will move to S1 if Nfree is larger

than Thard. If there is an incoming request whose priority is

high, the system switches to S3. While in S3, after completing

current GC and servicing the high priority request, the system

will switch to S1 or S2 according to Nfree.

IV. FULLY-PREEMPTIBLE GC

In Section III, we have presented a novel semi-preemptible

garbage collector with several I/O scheduling algorithms. In

this section, we present a fully-preemptible GC mechanism by

allowing preemption on any on-going I/O operations.

A. Fully-Preemptible GC (F-PGC)

A typical NAND flash accesses the NAND flash cells

through a page buffer. If a read command is issued, the

requested page is copied from the NAND flash cell to the

page buffer and the requester reads data from the page buffer.

Similarly, to write data to the NAND flash memory, the

requester writes data to the page buffer and issues a write

command. These commands are used as atomic operations,

i.e., if the commands are issued, they cannot be suspended or

canceled until they finish. However, the physical operations

on NAND flash cells are not atomic. Current implementation

of flash operations, such as page read, page write and block

6

erase, have been implemented atomic because the NAND flash

interface [30] doesn’t support preemption, however, they can

be implemented preemptible. We add a suspend command

and a resume command to the interface to implement fully-

preemptible GC (F-PGC). AMD’s NAND flash memories [37]

used to support suspend/resume commands for the erase

operation. The suspend and resume commands should be

operable with read and write operations in addition to the erase

operation to support fully preemptible garbage collection.

B. Design for Suspend and Resume Commands

The flash operations can be broken-down into multiple

phases. Just like the semi-preemption of the GC process,

the flash operations can be preempted in-between phases.

For example, the NAND flash memory usually employs the

incremental step pulse programming (ISPP) as its write and

erase method because it offers fast write/erase performance

coping with process variations [3]. It tries to write/erase by

a pulse with an initial voltage e.g. 15V and then verifies if

it is successful. If not, it keeps increasing the voltage by a

step e.g. 0.5V until it succeeds. Therefore, the write/erase

operation consists of repeated pulse and verify phases. In-

between phases, it is possible for the operation to be sus-

pended. The suspend command forces the on-going command

to stop its operation until the resume command restarts its

operation. While a previously issued command is suspended,

a new command may be issued unless the new command is

on the same page or block that is occupied by the suspend

command.

Fig. 8: An example of preempting an on-going flash operation with
the suspend command.

Figure 8 gives an example of using suspend/resume com-

mands. For implementing the states of suspension and re-

sumption, an extra page buffer is required. Suppose that a

read command is issued on page x. The data in page x is

copied to page buffer A. Before the read command finishes,

we may issue a suspend command. While the read command

is suspended, one can issue a write command on page y.

The page y should be different from page x but it can be

in the same block of page x. However, if the suspended

command is the erase operation, the new command cannot

be on any page in that block. The data to be written to page

y should be stored in page buffer B. Once the write command

finishes, the previous read command that was suspended can

resume. Two commands can never suspend at the same time.

In this example, write operation can never suspend while read

command is suspended. At the cost of additional page buffers,

we can allow more commands to be suspended at the same

time. However, in order to implement F-PGC, suspending only

one command at a time is enough.

If the flash device supports suspend and resume commands

but has only one page buffer per plane, servicing incoming

requests could be limited according to the availability of the

page buffer. For the above-mentioned example, when the on-

going read command is suspended, its page buffer is partially

occupied. If the incoming write request is on a different plane,

it can be serviced immediately, but if it is on the same plane, it

should wait until the on-going read command finishes because

the page buffer is not available for servicing the request.

After issuing a command, FTL should check if the com-

mand is completed either by polling the status register or

by receiving an interrupt. Servicing an interrupt incurs non-

negligible overhead because of mode switching. For example,

ARM1176 needs 200 cycles per switch and Cortex-A8 needs

1200 cycles per switch [2]. Since checking by an interrupt

incurs non-negligible mode switching overhead to implement

F-PGC, a polling mechanism has been implemented.

C. Operation Sequence

Fig. 9: Operation sequence of fully preemptible GC.

A typical GC process consists of a series of page read, data

transfer, page write, and meta data update and erase operations

as described in Figure 2. As illustrated in Figure 9, suppose

that a write request arrives during a page read. As discussed

in the previous subsection, FTL checks if the read command

is completed by polling the status register. While polling the

status register FTL also looks up the incoming request queue

to check if any request comes during the on-going operation.

If a request arrives, FTL issues a suspend command to stop

the current read command and services the write command.

Looking up the request queue does not incur an additional

overhead because it occurs while polling the status register and

time spent on polling never contributes to the performance.

TABLE III: Handling requests on the same logical page of the on-
going command.

The incoming request may happen to be on the same logical

page of the on-going command. Table III summarizes cases

of conflicts. If the incoming request is a read on the same

logical page of the on-going read command, the on-going read

7

command doesn’t need to be suspended. Once the current read

command finishes, data in the page buffer can be used for

servicing the incoming request as well as for the following

page write.

The incoming write request may be on the same logical

page of the on-going read command. Then the data should be

written to a different physical page. In this situation, the data

read by the on-going read command are discarded because

moving this page is not necessary any more.

Referring to Figure 8, suppose that the on-going read

command and the incoming write request are on the same

logical page and the logical page is mapped to physical page

x before the read command is suspended. The on-going read

command on page x is copying data from the NAND cell to

page buffer A. When a write request comes on the same logical

page, the on-going read command is suspended. The data to be

written is stored in page buffer B and then a write command

is issued to physical page y. After the write command finishes

the meta data of page x and y should be updated as valid (V)

to invalid (I) and empty (E) to valid (V), respectively as the

mapping of the logical page is changed from physical page x
to y. The data in page buffer A were supposed to be written by

the following page write in the GC process. However, in this

situation, data in page buffer A don’t need to be written. The

purpose of moving pages by GC is to move and invalidate all

the valid pages in the victim block. In the case of page x, it is

already invalidated by the incoming request and the up-to-date

data are written to a different physical page. Therefore, page

x doesn’t need to be written by GC any more.

A request may come during the data transfer. Here, we

also assume the data transfer is issued by the CPU. While

moving data, the CPU also needs to look up the request queue

because we assume an interrupt is not used. If the CPU looks

up the queue frequently, it may shorten the response time of

the incoming request, but it delays the completion time of the

data transfer due to the overhead of the look-up.

When a request arrives during a page write, it can be

serviced immediately by suspending the on-going write com-

mand. If the incoming request is a read request on the same

logical page, it can be serviced directly from the page buffer

without issuing a read command because the up-to-date data

are stored in the page buffer which are being written to the

NAND cell.

The incoming write may be on the same logical page of

the on-going write command. Then the page written by the

on-going write command is invalidated immediately after the

command is completed. This situation is very similar to the

example of Figure 9. Suppose that GC issues a write command

to physical page x for moving a logical page. Before the

write command is completed, a write request arrives on the

same logical page. The incoming write request writes data to

physical page y, which is the latest data. When resuming, the

on-going page write to physical page x is completed but data

in page x are stale. Therefore, physical page x is marked as

invalid right after the on-going write finishes.

During meta data update the CPU needs to look up the

request queue occasionally to service the incoming requests.

How frequently the CPU should look up the queue also needs

to be determined based on the trade-off between the response

time of incoming requests and the overhead of the look-up.

If a request comes during an erase operation, it can be also

serviced immediately by suspending the erase command. In

this case, the incoming request cannot be on a page in the

victim block that is being processed by the erase command.

Before issuing the erase command, FTL should have moved

all the valid pages, and the victim block contains only invalid

pages. Therefore, there is no reason to read a page from the

victim block. Also a page in that block cannot be written

because the block is not erased yet.

D. Worst-Case Execution Time Analysis

While SSDs offer better average response time than HDDs,

they often suffer from performance variability. From the view

point of the file system, it looks non-deterministic when

the request experiences long latency because it has no idea

when GC delays the request. As will be demonstrated by

the experiments, the proposed preemptible GC schemes at-

tenuate the performance variability by reducing the worst-

case response time. This subsection provides analysis on the

worst-case response time to understand how the proposed GC

schemes reduce the worst-case response time and performance

variability.

To keep consistent with previous literatures [10], [34], we

use the same terminology. The worst-case execution time

(WCET) refers to the worst-case response time of incoming re-

quests. Table IV summarizes the terminology used for WCET

analysis.

TABLE IV: Terminology for WCET analysis.

Ter denotes the time to erase a block. It corresponds

to the time taken to complete an erase command on the

NAND flash chip. Tsuspend means the time to suspend an on-

going command. Since suspending an erase command takes

20µs [37], we assume suspending all the commands takes

20µs. U(er) and U(ew) denote the upper bound of time to

read or write a page. These values vary with how the FTL

manages the meta data.

TABLE V: WCET comparison.

Table V compares WCET of various techniques. It should

be noted that WCET of PGC and FPGC is of state 1 where

all incoming requests are allowed to preempt GC. If the state

is changed from 1 to 2 or 3 due to lack of free blocks, WCET

would be increased. Since previous works [10], [34] don’t

take this pathological behavior into consideration, we only

present WCET of state 1 in our comparison. WCET of PGC

is the same with that of GFTL [10]. In PGC, on-going flash

commands cannot be preempted. The longest command is the

erase command. In the worst case, the request should wait

8

for the erase command to finish, which takes Ter. After it

finishes, the request can be serviced which takes U(er) or

U(ew). Since the erase command cannot be merged with the

request nor pipelined, the merging and pipelining cannot help

to reduce WCET.

When FPGC is employed, any on-going command can be

preempted, which takes Tsuspend. Since Tsuspend is much

smaller than Ter, WCET of FPGC is substantially shorter than

PGC and other related techniques. PGC also offers WCET

comparable to existing real-time FTLs [10], [34].

V. EXPERIMENTAL RESULTS

A. Experimental Setup

We evaluate the performance of the PGC scheme using

Microsoft Research’s SSD simulator [1]. MSR SSD simulator

is event-driven and based on the Disksim 4.0 [4] simulator.

MSR SSD simulator has been used in several SSD related

researches [32], [36]. In this paper, we simulated a NAND

flash based SSD. SSD specific parameter values used in the

simulator are given in Table VI.

TABLE VI: Parameters of SSD model.

To conduct a fair performance evaluation of our proposed

PGC algorithm we fill the entire SSD with valid data prior

to collecting performance information. Filling the entire SSD

ensures that GC is triggered as new write requests arrive

during our experiments. Specifically, for GC, we use a greedy

algorithm that is designed to minimize the overhead of GC.

The greedy algorithm selects a victim block to be erased whose

number of valid pages is minimal. The more valid pages there

are in the victim block, the longer it takes for GC to complete

as the GC process needs to move more pages.

Our preemptible GC algorithm can be applied to any

existing GC schemes, such as idle-time or reactive. In the

idle-time GC scheme, the GC process is triggered when there

are no new incoming requests and all queued requests are

already serviced. In the reactive scheme, GC is invoked based

on the number of available free blocks, without regard to the

incoming request status. If the number of available free blocks

is less than the set threshold, then the GC process is triggered;

otherwise, it continues servicing requests. The reactive GC

scheme is the default in the MSR SSD simulator, and we use it

as our baseline (non PGC) GC scheme. The lower bound of the

threshold in our simulations is set as the 5% of available free

blocks. Ongoing GC is never preempted in the baseline GC

scheme in our simulations. MSR SSD simulator implements a

multi-channel SSD, and GC operates per channel basis. In our

experiments, even if one channel is busy for GC, any incoming

requests to other channels can be serviced. The preemption

occurs only if the incoming request is on the same channel

where GC is running.

We use a mixture of real-world and synthetic traces to

study the efficiency of our semi-preemptible garbage collection

TABLE VII: Default parameters of synthetic workloads.

scheme. We use synthetic workloads with varying parameters

such as request size, inter-arrival time of requests, read access

probability, and sequentiality probability in access.2 The de-

fault values of the parameters that we use in our experiments

are shown in Table VII.

An exponential distribution and a Poisson distribution are

used for varying request sizes and inter-arrival times of re-

quests. Those distributions are well used to cover a variety of

scenarios of workload cases in particular for the distribution of

request arrivals. We vary one parameter while other parameters

are fixed.

We use four commercial I/O traces, whose characteristics

are given in Table VIII. We use write dominant I/O traces

from an OLTP application running at a financial institution

made available by the Storage Performance Council (SPC),

referred to as the Financial trace, and from Cello99, which

is a disk access trace collected from a time-sharing server

exhibiting significant writes which was running the HP-UX

operating system at Hewlett-Packard Laboratories. We also

examine two read-dominant workloads. Of these two, TPC-

H is a disk I/O trace collected from an OLAP application

examining large volumes of data to execute complex database

queries. Finally, a mail server I/O trace referred as OpenMail

is evaluated.

TABLE VIII: Characteristics of realistic workloads. Note that bursty
write percentage denotes the amount of write requests with less than
1.5 ms of inter-arrival times.

While the device service time captures the overhead of

GC, it does not include queuing delays for pending requests.

Additionally, using an average service time does not capture

response time variances. In this study we utilize (i) the system

service response time measured at the block device queue and

(ii) the variance in response times. Our measurement captures

the sum of the device service time and the additional time

spent waiting for the device (queuing delay) to begin to service

the request.

B. Performance Analysis of Semi-Preemptible GC

The following garbage collection schemes are evaluated in

this subsection:

• NPGC: A non-preemptible garbage collection scheme.

• PGC: A semi-preemptible garbage collection scheme

with both merging and pipelining enabled.

2If a request starts at the logical address immediately following the last
address accessed by the previously generated request, we consider it a
sequential request; Otherwise, we classify it as a random request.

9

(a) Request Size (b) Inter-arrival Time (c) Sequentiality (d) Read Ratio

Fig. 10: Performance improvements of preemptible GC for synthetic workloads. Average response times and standard deviations are shown
with different parameters of synthetic workloads.

1) Performance analysis for synthetic workloads: To evalu-

ate the performance of PGC with various characteristics of in-

put workloads, we start evaluating PGC with various synthetic

workloads. GC may have to be performed while requests are

arriving. Recall that GC is not preemptible in the baseline GC

scheme and incoming requests during GC are delayed until

the on-going GC process is complete. Figure 10 shows the

performance improvements when enabling GC preemption.

a) Request size: Figure 10(a) shows the improvements of

performance and variance by PGC for different request sizes

In this experiment, we vary the request size as 8, 16, 32, and

64 KB. These values are chosen because the average request

size of realistic workloads is between 7 and 31 KB, as given

in Table VIII. For a small request size (8 KB) we see the

improvement in response time by 29.44%. Furthermore, the

variance of average response times decreases by 87.31%. As

the request size increases, we see further improvements. For

a large request (64 KB), the response time decreases by up to

69.21% while its variance decreases by 83.03%.

b) I/O arrival rate: Similar to the improvement with

respect to varying request sizes, we also see an improvement

with respect to varying the arrival rate of I/O requests. Typical

response time of a request on a page is less than 1 ms without

GC while it can be as high as 3-4ms when the page request is

queued up due to GC. Based on this observation, we vary the

inter-arrival time between 1 and 10 ms in our experiments. In

Figure 10(b), it can be seen that PGC is minimally impacted by

intense arrival rate. In contrast, the system response times and

their variances for the baseline (NPGC) increase with respect

to the request arrival rate.

c) Sequential access: Random workloads (where con-

secutive requests are not next to each other in terms of

their access address) are known to be likely to increase the

fragmentation of SSD, causing a GC overhead increase [21],

[15]. We experiment with PGC and NPGC by varying the

sequentiality of requests. Figure 10(c) illustrates the results. As

can be seen, NPGC exhibits a substantial increase in system

response time and its variance for a 60% sequential workload

while PGC performance levels remain constant for all levels

of sequentiality.

d) Write percentage: Writes are slower than reads in

SSDs because flash page writes are slower than reads (recall

unit access latency for reads and writes, 25us and 200us,

respectively) and GC can incur further delays. In Figure 10(d),

we see the improvement of PGC as the percentage of writes

within the workload increases. Overall, we observe that PGC

exhibits a marginal increase in response time and variance

compared to the NPGC scheme. For example, PGC perfor-

mance slows down by only 1.77 times for an increase of writes

in workloads (from 80% to 20% of reads) while NPGC slows

down by 3.46 times.
From the performance analysis with synthetic workloads,

we can observe a firm trend that PGC improves the per-

formance, regardless of workload characteristics, and has a

beneficial impact on the performance when the workload is

heavier (e.g., larger request size, shorter inter-arrival time, less

sequentially and more write access).
2) Performance analysis for realistic server workloads:

This sub-subsection evaluates the performance of PGC with

realistic server workloads. Merging and pipelining techniques

and the safeguard are evaluated individually. The following

garbage collection schemes are added for the evaluation in

this sub-subsection:

• PGC+None: A semi-preemptible garbage collection

scheme without any optimization techniques.

• PGC+Merge: Only merging technique enabled PGC.

• PGC+Pipeline: Only pipelining technique enabled PGC.

Figure 11 presents the improvement of system response

time and variance over time for realistic workloads. For

write-dominant workloads, we see an improvement in average

response time by 6.05% and 66.56% for Financial and Cello,

respectively (refer to Figure 11(a)). Figure 11(b) shows a sub-

stantial improvement in the variance of response times. PGC

reduces the performance variability by 49.82% and 83.30%

for each of the workloads. In addition to the improvement in

performance variance, we observe that PGC can further reduce

the maximum response time of NPGC by 77.59% and 84.09%

for Financial and Cello traces as illustrated in Figure 11(c).
For the OpenMail trace PGC does not show a significant

improvement for performance and variance, as we expected for

read-dominant traces. However, PGC reduces the maximum

response time by 60.26%. Interestingly for TPC-H, although it

is a read dominant trace, we observe a substantial improvement

for performance and variance. TPC-H is a database applica-

tion. The disk trace includes a phase of application run that

inserts tables into a database, which is shown as a series

of large write requests (around 128 KB) for database insert

operations.
Moreover, we observe further improvement by the pipelin-

ing technique on PGC in the Figure 11.
Table IX shows how much the merging and pipelining con-

tribute to the performance enhancement. The numbers shown

10

(a) Average Response Time (b) Variance of Response Time (c) Maximum Response Time

Fig. 11: Performance improvements of PGC and PGC+Pipelining for realistic server workloads.

(a) Average Response Time (b) Variance of Response Time (c) Improvement in average response time
of PGC+Pipelining over PGC

Fig. 12: Scalability tests by increasing the arrival rate of I/O requests.

in this table are the percentage of NAND flash commands

affected by merging or pipelining among all flash commands

issued by the incoming requests. Let Nw be the number of

total write requests and Nr, the number of total read requests.

The number of actual flash commands may not be the same

because a request may span to multiple commands to multiple

packages. Let’s denote the number of write commands by Cw

and that of read commands by Cr. Out of Cw commands, Mw

commands are merged into commands issued by the on-going

GC. Similarly, Pw commands are pipelined with commands

of GC. Then, the percentage of write commands affected by

merging is computed by Mw

Cw+Cr

. The percentage of write

commands affected by pipelining is Pw

Cw+Cr

. Those of read

commands are computed in the same way.

TABLE IX: Percentage of NAND flash commands affected by
merging and pipelining.

It is shown in Table IX that the chance of merging is

very low. Especially, the chance of merging and pipelining for

OpenMail is less than 0.001%. However we can still see that

a high reduction of maximum response time can be achieved

for OpenMail by I/O merge technique in Figure 11, although

the average performance is not improved significantly.

The chance of pipelining is higher than that of merging. For

Cello, an improvement is observed in the average response

time of PGC by 13.69% and its performance variance by

33.53%. Note that pipelining one command may not contribute

to improving the performance because a request may span to

multiple read or write commands.

Continuous GC preemption can cause starvation of free

blocks. Thus, we develop a mechanism that can avoid a situa-

tion where an entire system becomes completely unserviceable

because no free blocks are available. For this, we implement

our PGC algorithm with a hard limit of available free blocks.

Our algorithm now has two thresholds, one is for triggering

the GC process and the other is for stopping preemption.

Once the number of free blocks reaches Thard, SSD stops

GC preemption. A hard limit (Thard) is set for a lower bound

of the number of free blocks available in SSD.

To illustrate the effect of our extra threshold, we use an

amplified Cello trace where the arrival rate of I/O requests

are 16 times higher and the average request size of our test

workload is about 300 KB. Cello is chosen because Cello is

the most write-intensive workload among the four benchmarks,

but with the original traces, we did not observe the shortage

of free blocks incurred by preemption. To evaluate the impact

of the safe guard, we had to amplify the trace artificially.

In Figure 13(a), we see the situation where there are no

free blocks left due to continuous GC preemption and the

SSD is not available to service the I/O requests. It captures

a zoomed-in region for 7 seconds of entire simulation run.

The remaining free blocks indicate the ratio of the number of

available free blocks over the minimum number of free blocks.

The minimum number of free blocks corresponds to the soft

threshold (Tsoft) which is 5% of the total number of blocks

as shown in Table VI. On the contrary, in Figure 13(b) and

(c), we see that the SSD handles the starvation of free blocks

in the SSD by adjusting Thard. We see that the lower Thard

shows better response time while it exhausts more free blocks.

Since there exists a trade-off between the number of free

blocks and response times, we evaluate the impact of perfor-

mance in terms of response time according to Thard. Figure 14

shows the cumulative distribution function of response time for

11

(a) No hard threshold (b) Thard = 80% of Tsoft (c) Thard = 20% of Tsoft

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

F
re

e
 b

lo
c
k
s
 (

%
)

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

F
re

e
 b

lo
c
k
s
 (

%
)

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

F
re

e
 b

lo
c
k
s
 (

%
)

Fig. 13: Impact of hard threshold. The benchmark is Cello.

different Thard. The average response times (in ms) are shown

below each graph in the order of increasing the percentage of

hard limit (Thard). As we lower Thard, we see overall response

time improve. For example, we observe 18% improvement in

average I/O response times when we lower Thard from 80%

to 20% of Tsoft.

3) Performance Sensitivity Analysis: As shown in figures

12(a) and (b), with respect to increasing arrival rate, average

response time and variance also improve. In particular, im-

provements in response times can be seen for write-dominant

workloads (Financial and Cello) compared to read-dominant

workloads in Figure 12(a). For TPC-H, we see a gradual

improvement for the performance variability. Overall, we

observe that PGC can increase the performance and improve

the variance up to 90% for a 16 times more bursty workload

(i.e. the I/O arrival rate is increased by 16 times). Figure 12(c)

shows further improvements of the GC pipelining technique.

In this figure, improvements in average response time for

Cello can be clearly observed. Note that the scale for Cello

is the right y-axis. For the other workloads, the benefit of

the pipelining is not evident until the trace is accelerated

significantly. The Financial and TPC-H exhibit a similar trend,

but the OpenMail does not benefit from the pipelining because

its chance is very low. However, we can still observe that

the gaps of performance and variance are widened as the

arrival rate of I/O requests increases. In other words, the GC

pipelining technique makes PGC enabled SSDs robust enough

to provide a sustained level of performance.

In addition to the greedy GC algorithm, we implemented

two more GC algorithms to evaluate the performance of our

proposed PGC for various real workloads. We implemented

an Idle-based proactive GC algorithm where GC is triggered

when an idle time is detected. For implementing idle time

detection algorithm in workloads, we used a well-regarded

heuristic on-line algorithm as in [13]. A wear-level aware GC

algorithm has also been implemented [19]. Unlike the greedy

GC algorithm, wear-level aware GC algorithm considers the

wear-levels of blocks to avoid selecting a block that has

experienced more erase operations than the average wear-out.

The wear-level aware GC algorithm aims to distribute erase

operations evenly across blocks.

Figure 15 shows the improvement of PGC against NPGC

for various GC algorithms and various real workloads. We see

that GC preemption works well regardless of GC algorithms.

However, we see that the performance improvement of the

idle-based algorithm is smaller than Figure 11. It is because

idle-based GC algorithm can run GC in background, which

doest not hurt the I/O service time. We also observe that

Greedy-PGC outperforms Idle-NPGC for all the traces except

for OpenMail. Even though GC runs during idle times, GC

still has to run upon write requests when they come in a

bursty manner. In case of OpenMail, the average response

time and standard deviation of the idle-based GC algorithm is

slightly higher than those of the baseline greedy GC algorithm.

We speculate that running GC during idle times could make

the operation sequence different, which affects the results,

however this can be attributed to simulation artifact. Wear-

aware GC algorithm does not show significant difference from

the baseline of greedy GC algorithm.

From these experiments, we can observe that PGC reduces

the response time and the variation regardless of GC algo-

rithms. More importantly, it is shown that the PGC with

a greedy GC algorithm (Greedy-PGC) that is triggered on

demand will outperform the NPGC with a GC running during

idle time (Idle-NPGC) in the background.

All the preceding experiments in this subsection were done

without write-buffer. In this experiment, we study the impact

of write-buffer on SSD. We considered STT-RAM based write-

buffer. The read and write latency of STT-RAM is 20ns for

both operations. STT-RAM has 1015 times of program/erase

operation cycles, which is much higher than in NAND flash.

Write-regulation technique that is a sort of selective write-

buffering [23] can be employed if the lifetime of the STT-

RAM buffer is seriously concerned. In our write-buffer im-

plementation, data blocks are flushed into SSD whenever idle

times in workloads are detected by flush operation.

Figure 16 shows the improvement of the average response

time by using PGC compared against NPGC when an 1

MB write-buffer is employed. Compared with Figure 11(a),

the performance improvement by using PGC is decreased,

but PGC still improves the performance by 0.47%, 27.74%,

11.97% and 0.04% for Financial, Cello, TPC-H, and Open-

Mail, respectively. This experiments demonstrates that the

proposed PGC improves the performance of write-intensive

workloads even if a write-buffer is employed.

C. F-PGC Evaluation

After extensive evaluation of the semi-preemptible GC

(PGC), we evaluate F-PGC and compare it with PGC. F-

PGC has been evaluated with the same simulation environment

described in Section V-A. We applied PGC and F-PGC to

four realistic server workloads. We also implemented PGC+SE

where suspend/resume commands are supported only for the

erase operation. Note that suspend/resume commands can be

operable with read, write and erase operations to implement F-

PGC. The following garbage collection schemes are evaluated

in this subsection:

• PGC: A semi-preemptible garbage collection scheme.

• PGC+SE: PGC with suspend/resume commands being

supported only for the erase command.

• F-PGC: A fully-preemptible GC where suspend/resume

12

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

C
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti
o
n
 f

u
n
c
ti
o
n

Response time (ms)

20%
40%
60%
80%

Avg. Resp. Times = {23.8, 24.4, 25.7, 29.1}

Fig. 14: Trade-off between response time
and hard limit. The benchmark is Cello.

(a) (b)

N
o

rm
a

liz
e

d
 a

v
e

ra
g

e
 r

e
s
p

o
n

s
e

 t
im

e

N
o

rm
a

liz
e

d
 s

ta
n

d
a

rd
 d

e
v
ia

ti
o

n

Fig. 15: Performance improvement of PGC for different GC algorithms.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Financial

C
ello

TPC
-H

O
penM

ail

N
o
rm

a
liz

e
d
 a

v
e
ra

g
e
 r

e
s
p
o
n
s
e
 t
im

e

NPGC
PGC

Fig. 16: Performance improvement of PGC
over NPGC when an 1 MB write-buffer is
employed.

(a) Average Response Time (b) Variance of Response Times

N
o
rm

a
liz

e
d
 a

v
e
ra

g
e
 r

e
s
p
o
n
s
e
 t
im

e

N
o
rm

a
liz

e
d
 s

ta
n
d
a
rd

 d
e
v
ia

ti
o
n

Fig. 17: Performance improvements of PGC+SE and F-PGC for realistic server workloads.

commands are supported for read, write and erase com-

mands.

The suspend command takes up to 20µs [37] since a phase

can last up to 20µs. Therefore, we assume the overhead of

suspending all the operations as 20µs.

Figure 17 shows the normalized average response time

and the normalized variance of response times. As shown in

Figure 17(a) and (b), PGC+SE improves the average response

time by up to 8.21% and the standard deviation by up to

29.63% compared to PGC. In case of F-PGC, it improves

them by up to 68.13% and 83.59%, respectively. F-PGC shows

significant improvements for Cello and TPC-H. Our conjecture

is that Cello and TPC-H contain large amounts of bursty write

requests, and F-PGC allows preemption on erase operations.

Table VIII presents the percentages of write requests with

less than 1.5ms of inter-arrival time for workloads. Note that

1.5ms is the block erase time on flash. Cello and TPCH

have significantly higher percentages of bursty write requests

than Financial and OpenMail. If an erase operation is not

preemptible (which does in F-PGC), request during the erase

operation will be delayed. Though Financial and Cello are

write-dominant, Cello is bursty, while Financial is not bursty.

Thus, F-PGC is not very effective for Financial. TPCH is

a read-dominant workload, however, most of bursty write

requests are gathered in the first part of the workload (less

than 10% of total simulated time), and the remaining portion

is mostly read requests, thus, F-PGC could significantly benefit

from the first bursty write-dominant phase. OpenMail is read

dominant, which has minimal impact on F-PGC.

The performance gain came mostly from preempting the

erase and write operations. In our experiment, we allowed to

preempt the read operation, but preempting the read operation

did not have much impact on the performance because its

chance for preemption was low and the latency of read was

very short. Depending on the implementation, preempting the

read operation may not be required.

VI. RELATED WORK

To offer predictable performance, real-time FTLs [10], [34]

adopt a similar GC scheme where incoming requests are

serviced while GC is running. They will need additional free

blocks in order to buffer incoming write requests to avoid

interruptions. When a block is full, it is queued to be cleaned

later by the GC process. If any write requests come to that

block, they will be directed to a temporary buffer until the

block is cleaned, then the pages in the buffer are moved to

the original block, or their role is switched. The proposed

PGC and FPGC do not need an additional buffer because they

exploit the page buffer that already exists in the flash memory

device (as explained in Section III-A).

Preemptible GC is discussed in [7] as a possible method

to meet the constraints of a real-time system equipped with

NAND flash. They proposed creation of a GC task for each

real-time task so that the corresponding GC task can prepare

enough free blocks in advance. In a real-time environment both

GC tasks and real-time tasks need to be preemptible. However,

since NAND flash operations can not be interrupted, these are

defined as atomic operations. In contrast, our work provides

a comprehensive study on the impact of the preemptible GC

in an SSD environment (compared to real-time environment)

and we emphasize optimizing performance by exploiting the

internal parallelism of the NAND flash device (e.g. the multi-

plane command and pipelining [32]).

Since it is well known that GC has significant adverse

impact on the performance of SSD [10], [34], [16], [25], GC

has attracted researchers’ interest. Han [16] proposes using

prediction to reduce the overhead of GC. An analytical model

of the performance of GC [5] is developed to analyze the

13

impact of GC on the performance. Recently, Wu [39] reported

that suspending the write and erase operations help to improve

the performance. Although GC is not considered in his paper,

his observation is in full agreement with ours. Kim [25]

proposes a coordinated GC mechanism for an array of SSDs

to improve performance degradation due to GC incoordination

of individual SSDs.

In the HDD domain, semi-preemptible I/O has been evalu-

ated [12] and its extension to RAID arrays also has been stud-

ied [12] by allowing preemption of on-going I/O operations to

service a higher-priority request. To enable preemption, each

HDD access operation (seek, rotation, and data transfer) is split

into distinct operations. In-between these operations, a higher-

priority I/O operation can be inserted. In the case of PGC,

we allow preemption of GC to service any incoming request.

We split GC operations into distinct operations and insert

incoming requests in between them. In addition, we provide

further optimization techniques while inserting requests.

VII. CONCLUDING REMARKS

Solid-state drives (SSDs) offer several advantages over

HDDs: lower access latencies for random requests, lower

power consumption, lack of noise, and higher robustness to

vibrations and temperature. Although SSDs can offer bet-

ter performance on average than HDDs in terms of I/O

throughput (MB/s) or access latency, it often suffers from

performance variability because of GC. From our empirical

study, we observed that there are sudden throughput drops in

commercially-off-the-shelf SSDs when increasing the percent-

age of writes in workloads. While GC is triggered to clean

invalid pages to produce free space, incoming requests can

be pending in the I/O queue, delaying their services until the

GC finishes. This problem can become even more severe for

bursty write-dominant workloads which can be observed in

server-centric enterprise or HPC workloads.

To address this problem, we propose a semi-preemptible

GC (PGC) that allows incoming requests to be serviced even

before GC finishes by preempting on-going GC. We identified

preemption points that incur negligible overhead during GC

and found four states that prevent GC from starvation of

I/O service that can occur due to excessive preemption. We

enhance the performance even further by merging I/O requests

with internal GC I/O requests and pipelining requests of

the same type. We perform comprehensive experiments with

synthetic and realistic traces. It is demonstrated by experiments

that the proposed PGC can improves the average I/O response

time by to up 66.56% and variance of response times by to up

83.30%. We applied PGC for accelerated workloads where

inter-arrival time is shortened and evaluated with different

GC schemes including idle-based proactive GC scheme and

wear-aware selection algorithm. PGC exhibits significant per-

formance improvement regardless of GC schemes for those

workloads.

This paper also explores the feasibility of fully preemptible

GC (F-PGC). Assuming that there is a NAND flash memory

that supports suspend/resume commands for read, write and

erase operations, we can implement F-PGC without incur-

ring excessive overhead. Our evaluation result shows that F-

PGC can further improve the average response time and the

variation of response times by up to 14.57% and 52.48%,

respectively, compared to PGC.

ACKNOWLEDGMENTS

We would like to specially thank Doug Reitz for his detailed

comments and proof-reading which helped us improve the

quality of the manuscript. This research used resources of

the Oak Ridge Leadership Computing Facility, located in the

National Center for Computational Sciences at Oak Ridge

National Laboratory, which is supported by the Office of

Science of the Department of Energy under Contract DE-

AC05-00OR22725. Also this work was also partially spon-

sored through Korea Ministry of Knowledge Economy grant

(No. 10037244).

REFERENCES

[1] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D. Davis, Mark
Manasse, and Rina Panigrahy. Design tradeoffs for SSD performance.
In Proceedings of the Usenix Annual Technical Conference (USENIX

ATC), June 2008.
[2] ARM. ARM security technology, 2009. http://infocenter.arm.com/.
[3] Joe. Brewer and Manzur. Gill. Nonvolatile Memory Technologies with

Emphasis on Flash (A Comprehensive Guide to Understanding and

Using Flash Memory Devices). 2008.
[4] John S. Buch, Jiri Schindler, Steven W. Schlosser, Gregory R. Ganger,

and et al. The DiskSim Simulation Environment Version 4.0 Reference

Manual. http://www.pdl.cmu.edu/DiskSim/, 2008.
[5] Werner Bux and Ilias Iliadis. Performance of greedy garbage collection

in flash-based solid-state drives. Perform. Eval., 67(11):1172–1186,
November 2010.

[6] Philip Carns, Robert Latham, Robert Ross, Kamil Iskra, Samuel Lang,
and Katherine Riley. 24/7 characterization of petascale I/O workloads.
In Proceedings of the Workshop on Interfaces and Architectures for

Scientific Data Storage, 2009.
[7] Li-Pin Chang, Tei-Wei Kuo, and Shi-Wu Lo. Real-time garbage collec-

tion for flash-memory storage systems of real-time embedded systems.
ACM Transactions on Embedded Computing Systems, 3(4):837–863,
November 2004.

[8] Yuan-Hao Chang, Jen-Wei Hsieh, and Tei-Wei Kuo. Endurance en-
hancement of flash-memory storage systems: An efficient static wear
leveling design. In Proceedings of the 44th Annual Conference on

Design Automation, DAC ’07, pages 212–217, New York, NY, USA,
2007. ACM.

[9] Feng Chen, David A. Koufaty, and Xiaodong Zhang. Understanding
intrinsic characteristics and system implications of flash memory based
solid state drives. In Proceedings of the eleventh International joint

conference on Measurement and modeling of computer systems, SIG-
METRICS’09, pages 181–192, 2009.

[10] Siddharth Choudhuri and Tony Givargis. Deterministic service guar-
antees for nand flash using partial block cleaning. In Proceedings of

the 6th IEEE/ACM/IFIP International conference on Hardware/Software
codesign and system synthesis, CODES+ISSS’08, pages 19–24, New
York, NY, USA, 2008. ACM.

[11] Tae-Sun Chung, Dong-Joo Park, Sangwon Park, Dong-Ho Lee, Sang-
Won Lee, and Ha-Joo Song. System software for flash memory: A
survey. In Proceedings of the International Conference on Embedded

and Ubiquitous Computing, pages 394–404, August 2006.
[12] Zoran Dimitrijevi, Raju Rangaswami, and Edward Chang. Design and

implementation of semi-preemptible IO. In Proceedings of the USENIX
Conference on File and Storage Technologies, FAST’03, March 2003.

[13] Fred Douglis, P. Krishnan, and Brian Marsh. Thwarting the power-
hungry disk. In In Proceedings of the 1994 Winter USENIX Conference,
pages 293–306, 1994.

[14] Eran Gal and Sivan Toledo. Algorithms and data structures for flash
memories. ACM Computing Survey, 37(2):138–163, 2005.

[15] Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar. DFTL: a
flash translation layer employing demand-based selective caching of
page-level address mappings. In Proceeding of the 14th International
conference on Architectural support for programming languages and

operating systems, ASPLOS’09, pages 229–240, 2009.

14

[16] Long-zhe Han, Yeonseung Ryu, Tae-sun Chung, Myungho Lee, and
Sukwon Hong. An intelligent garbage collection algorithm for flash
memory storages. In Proceedings of the 6th International conference on

Computational Science and Its Applications - Volume Part I, ICCSA’06,
pages 1019–1027, Berlin, Heidelberg, 2006. Springer-Verlag.

[17] Intel. Intel Xeon Processor X5570 8M Cache, 2.93 GHz, 6.40 GT/s
Intel QPI. http://ark.intel.com/Product.aspx?id=37111.

[18] Intel. Intel X25-E Extreme 64GB SATA Solid-State Drive SLC. http:
//www.intel.com/design/flash/nand/extreme/index.htm.

[19] Dawoon Jung, Yoon-Hee Chae, Heeseung Jo, Jin-Soo Kim, and Joonwon
Lee. A group-based wear-leveling algorithm for large-capacity flash
memory storage systems. In Proceedings of the 2007 International

conference on Compilers, architecture, and synthesis for embedded

systems, CASES’07, pages 160–164, 2007.
[20] Jeong-Uk Kang, Heeseung Jo, Jin-Soo Kim, and Joonwon Lee. A

superblock-based flash translation layer for NAND flash memory. In
Proceedings of the 6th ACM & IEEE International conference on

Embedded software, pages 161–170, 2006.
[21] Hyojun Kim and Seongjun Ahn. BPLRU: A buffer management scheme

for improving random writes in flash storage. In Proceedings of the

USENIX Conference on File and Storage Technologies, FAST’08, pages
1–14, February 2008.

[22] Youngjae Kim, Raghul Gunasekaran, Galen M. Shipman, David A. Dil-
low, Zhe Zhang, and Bradley W. Settlemyer. Workload characterization
of a leadership class storage. In Proceedings of the 5th Petascale Data
Storage Workshop, PDSW’10, November 2010.

[23] Youngjae Kim, Aayush Gupta, Bhuvan Urgaonkar, Piotr Berman,
and Anand Sivasubramaniam. Hybridstore: A cost-efficient, high-
performance storage system combining SSDs and HDDs. In Proceedings
of the IEEE International Symposium on Modeling, Analysis and Sim-

ulation of Computer and Telecommunication Systems, MASCOTS’11,
July 2011.

[24] Youngjae Kim, Sudhanva Gurumurthi, and Anand Sivasubramaniam.
Understanding the performance-temperature interactions in disk i/o of
server workloads. In Proceedings of the International Symposium on

High-Performance Computer Architecture, , HPCA’06, pages 179–189,
Febuary 2006.

[25] Youngjae Kim, Sarp Oral, Galen M. Shipman, Junghee Lee, David A.
Dillow, and Feiyi Wang. Harmonia: A globally coordinated garbage
collector for arrays of solid-state drives. In Proceedings of the 2011
IEEE 27th Symposium on Mass Storage Systems and Technologies,
MSST’11, pages 1–12, 2011.

[26] Junghee Lee, Youngjae Kim, Galen M. Shipman, Sarp Oral, Feiyi Wang,
and Jongman Kim. A semi-preemptive garbage collector for solid
state drives. In Proceedings of the IEEE International Symposium on

Performance Analysis of Systems and Software, ISPASS’11, pages 12–
21, April 2011.

[27] Sang-Won Lee, Dong-Joo Park, Tae-Sun Chung, Dong-Ho Lee, Sang-
won Park, and Ha-Joo Song. A log buffer-based flash translation layer
using fully-associative sector translation. ACM Trans. Embed. Comput.
Syst., 6(3):18, 2007.

[28] Sungjin Lee, Dongkun Shin, Young-Jin Kim, and Jihong Kim. LAST:
locality-aware sector translation for NAND flash memory-based storage
systems. SIGOPS Oper. Syst. Rev., 42(6):36–42, 2008.

[29] H. Niijima. Design of a solid-state file using flash EEPROM. IBM

Journal of Research and Developement, 39(5):531–545, 1995.
[30] ONFI. Open NAND flash interface specification. http://www.onfi.org/.
[31] Sarp Oral, Feiyi Wang, David A. Dillow, Galen M. Shipman, and Ross

Miller. Efficient object storage journaling in a distributed parallel file
system. In Proceedings of the USENIX Conference on File and Storage

Technologies, FAST’10, February 2010.
[32] Seon-Yeong Park, Euiseong Seo, Ji-Yong Shin, Seungryoul Maeng, and

Joonwon Lee. Exploiting internal parallelism of flash-based SSDs.
Computer Architecture Letters, 9(1):9–12, January-June 2010.

[33] Steven L. Pratt and Dominique A. Heger. Workload dependent perfor-
mance evaluation of the linux 2.6 i/o schedulers. In Linux Symposium,
July 2004.

[34] Zhiwei Qin, Yi Wang, Duo Liu, and Zili Shao. Real-time flash
translation layer for nand flash memory storage systems. In Real-

Time and Embedded Technology and Applications Symposium, RTAS’12,
pages 35–44, April 2012.

[35] Mendel Rosenblum and John K. Ousterhout. The design and imple-
mentation of a log-structured file system. ACM Trans. Comput. Syst.,
10(1):26–52, 1992.

[36] Ji-Yong Shin, Zeng-Lin Xia, Ning-Yi Xu, Rui Gao, Xiong-Fei Cai,
Seungryoul Maeng, and Feng-Hsiung Hsu. FTL design exploration
in reconfigurable high-performance SSD for server applications. In

Proceedings of the 23rd international conference on Supercomputing,
ICS’09, pages 338–349, 2009.

[37] Spansion. Am29BL162C data sheet. http://www.spansion.com/.
[38] Super Talent. Super Talent 128GB UltraDrive ME SATA-II

25 MLC. http://www.supertalent.com/products/ssd detail.php?type=
UltraDrive%20ME.

[39] G. Wu and X. He. Reducing ssd read latency via nand flash program
and erase suspensions. In Proceedings of the 10th USENIX Conference

on File and Storage Technologies, FAST’12, 2012.

Junghee Lee is currently a Ph.D. student at Georgia
Institute of Technology. He received the B.S. and
M.S. degrees in computer engineering from Seoul
National University in 2000 and 2003, respectively.
From 2003 to 2008, he was with Samsung Elec-
tronics, where he worked on electronic system level
design of mobile system-on-chip. His research inter-
ests include architecture design of microprocessors,
memory hierarchy, and storage systems for high
performance computing and embedded systems.

Youngjae Kim is an I/O Systems Computational
Scientist for the National Center for Computational
Sciences at Oak Ridge National Laboratory. He
received the B.S. degree in computer science from
Sogang University, Korea in 2001, the M.S. degree
from KAIST in 2003 and the Ph.D. degree in
computer science and engineering from Pennsylva-
nia State University in 2009. His research interests
include operating systems, parallel I/O and file sys-
tems, storage systems, emerging storage technolo-
gies, and performance evaluation. He is currently

an adjunct professor in the school of electrical and computer engineering
at Georgia Institute of Technology.

Galen M. Shipman is the Data Systems Architect
for the Computing and Computational Sciences Di-
rectorate at Oak Ridge National Laboratory. He is
responsible for defining and maintaining an overar-
ching strategy for data storage, data management,
and data analysis spanning from research and de-
velopment to integration, deployment and operations
for high-performance and data-intensive computing
initiatives at ORNL. Prior to joining ORNL, he was a
technical staff member in the Advanced Computing
Laboratory at Los Alamos National Laboratory. Mr.

Shipman received his B.B.A. in finance in 1998 and a M.S. degree in computer
science in 2005 from the University of New Mexico. His research interests
include High Performance and Data Intensive Computing.

Sarp Oral is a Research Scientist at the National
Center for Computational Sciences of Oak Ridge
National Laboratory where he is a staff member of
the Technology Integration Group. Dr. Oral holds
a Ph.D. in computer engineering from University
of Florida in 2003 and an M.Sc. in biomedical
engineering from Cukurova University, Turkey in
1996. His research interests are performance eval-
uation, modeling, and benchmarking, parallel I/O
and file systems, high-performance computing and
networking, computer architecture, fault-tolerance,

and storage technologies.

Jongman Kim is an assistant professor in the school
of electrical and computer engineering at Georgia
Institute of Technology. Dr. Kim received his B.S.
degree from Seoul National University in electrical
engineering in 1990. He received the M.S. degree in
electrical engineering and his Ph.D. degree in com-
puter science and engineering from Pennsylvania
State University in 2001 and 2007, respectively. His
research interests include hybrid multicore designs,
Network-on-Chip, Massively Parallel Processing Ar-
chitecture, and emerging memory systems. Before

joining Pennsylvania State University, he had worked at LG Electronics and
Neopoint Inc.

